What can machine vision do for lymphatic histopathology image analysis: a comprehensive review

Author:

Chen Haoyuan,Li Xiaoqi,Li ChenORCID,Rahaman Md. Mamunur,Li Xintong,Wu Jian,Sun Hongzan,Grzegorzek Marcin,Li Xiaoyan

Abstract

AbstractOver the past 10 years, machine vision (MV) algorithms for image analysis have been developing rapidly with computing power. At the same time, histopathological slices can be stored as digital images. Therefore, MV algorithms can provide diagnostic references to doctors. In particular, the continuous improvement of deep learning algorithms has further improved the accuracy of MV in disease detection and diagnosis. This paper reviews the application of image processing techniques based on MV in lymphoma histopathological images in recent years, including segmentation, classification and detection. Finally, the current methods are analyzed, some potential methods are proposed, and further prospects are made.

Funder

National Natural Science Foundation of China

Beijing Xisike Clinical Oncology Research Foundation

Publisher

Springer Science and Business Media LLC

Reference177 articles.

1. Acar E, Lozanski G, Gurcan M (2013) Tensor-based computation and modeling in multi-resolution digital pathology imaging: application to follicular lymphoma grading. In: Medical Imaging 2013: digital pathology, vol 8676. International Society for Optics and Photonics, p 867603

2. Ahmad M, Ahmed I, Ouameur M, Jeon G (2022) Classification and detection of cancer in histopathologic scans of lymph node sections using convolutional neural network. Neural Process Lett 55:3763–3778

3. Akakin H, Gurcan M (2012) Content-based microscopic image retrieval system for multi-image queries. IEEE Trans Inf Technol Biomed 16(4):758–769

4. Alom M, Aspiras T, Taha T et al (2019) Advanced deep convolutional neural network approaches for digital pathology image analysis: a comprehensive evaluation with different use cases. arXiv preprint. arXiv:1904.09075

5. Angulo J, Klossa J, Flandrin G (2006) Ontology-based lymphocyte population description using mathematical morphology on colour blood images. Cell Mol Biol (Noisy-le-grand) 52(6):2–15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3