Development of artificial neural network based mathematical models for predicting small scale quarry powder factor for efficient fragmentation coupled with uniformity index model
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Link
https://link.springer.com/content/pdf/10.1007/s10462-023-10524-1.pdf
Reference62 articles.
1. Adesida PA (2022) Powder factor prediction in blasting operation using rock geo-mechanical properties and geometric parameters. Int J Min Geo-Eng 56(1):25–32
2. Afradi A, Ebrahimabadi A (2020) Comparison of artificial neural networks (ANN), support vector machine (SVM) and gene expression programming (GEP) approaches for predicting TBM penetration rate. SN Appl Sci 2:1–16
3. Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22(5):717–727
4. Al-Bakri AY, Sazid M (2021) Application of artificial neural network (ANN) for prediction and optimization of blast-induced impacts. Mining 1(3):315–334
5. Amoako R, Jha A, Zhong S (2022) Rock fragmentation prediction using an artificial neural network and support vector regression hybrid approach. Mining 2(2):233–247
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Novel empirical models to assess rock fragment size by drilling and blasting;Measurement;2024-10
2. Integrating Underground Blast Fragmentation Modeling for Sustainable Mine-to-Mill Optimization: A Focus on Blast Fragmentation and Energy Efficiency in Comminution Circuits;Rock Mechanics and Rock Engineering;2024-09-01
3. Explosive utilization efficiency enhancement: An application of machine learning for powder factor prediction using critical rock characteristics;Heliyon;2024-06
4. Enhancing rock fragmentation assessment in mine blasting through machine learning algorithms: a practical approach;Discover Applied Sciences;2024-04-25
5. Experimental data – driven algorithm to predict muckpile characteristics in jointed overburden bench using unmanned aerial vehicle and AI tools;International Journal of Mining, Reclamation and Environment;2024-04-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3