Sentiment analysis with deep neural networks: comparative study and performance assessment
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Link
https://link.springer.com/content/pdf/10.1007/s10462-020-09845-2.pdf
Reference159 articles.
1. Akhtar MS, Gupta D, Ekbal A, Bhattacharyya P (2017) Feature selection and ensemble construction: a two-step method for aspect based sentiment analysis. Knowl Based Syst 125:116–135
2. Akhtar MS, Ekbal A, Narayan S, Singh V (2018) No, that never happened!! investigating rumors on twitter. IEEE Intell Syst 33(5):8–15
3. Akhtar MS, Ghosal D, Ekbal A, Bhattacharyya P, Kurohashi S (2019) All-in-one: emotion, sentiment and intensity prediction using a multi-task ensemble framework. IEEE Trans Affect Comput. https://doi.org/10.1109/TAFFC.2019.2926724
4. Akhtar MS, Ekbal A, Cambria E (2020) How intense are you? Predicting intensities of emotions and sentiments using stacked ensemble. IEEE Comput Intell Mag 15(1):64–75
5. Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv preprint arXiv:1607.06450
Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Disentangled variational auto-encoder for multimodal fusion performance analysis in multimodal sentiment analysis;Knowledge-Based Systems;2024-10
2. ArabBert-LSTM: improving Arabic sentiment analysis based on transformer model and Long Short-Term Memory;Frontiers in Artificial Intelligence;2024-07-02
3. Are Your Comments Positive? A Self-Distillation Contrastive Learning Method for Analyzing Online Public Opinion;Electronics;2024-06-26
4. Navigating Linguistic Diversity: In-Context Learning and Prompt Engineering for Subjectivity Analysis in Low-Resource Languages;SN Computer Science;2024-04-10
5. Sentiment analysis of COP9-related tweets: a comparative study of pre-trained models and traditional techniques;Frontiers in Big Data;2024-03-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3