Electricity consumption of anesthesia workstations and potential emission savings by avoiding standby

Author:

Drinhaus HendrikORCID,Drinhaus JorritORCID,Schumacher Christine,Schramm Michael J.,Wetsch Wolfgang A.ORCID

Abstract

Abstract Background Anesthesiology has a relevant carbon footprint, mainly due to volatile anesthetics (scope 1 emissions). Additionally, energy used in the operating theater (scope 2 emissions) contributes to anesthesia-related greenhouse gas (GHG) emissions. Objectives Optimizing the electricity use of medical devices might reduce both GHG emissions and costs might hold potential to reduce anaesthesia-related GHG-emissions and costs. We analyzed the electricity consumption of six different anesthesia workstations, calculated their GHG emissions and electricity costs and investigated the potential to reduce emissions and cost by using the devices in a more efficient way. Methods Power consumption (active power in watt , W) was measured with the devices off, in standby mode, or fully on with the measuring instrument SecuLife ST. Devices studied were: Dräger Primus, Löwenstein Medical LeonPlus, Getinge Flow C, Getinge Flow E, GE Carestation 750 and GE Aisys. Calculations of GHG emissions were made with different emission factors, ranging from very low (0.09 kg CO2-equivalent/kWh) to very high (0.660 kg CO2-equivalent/kWh). Calculations of electricity cost were made assuming a price of 0.25 € per kWh. Results Power consumption during operation varied from 58 W (GE CareStation 750) to 136 W (Dräger Primus). In standby, the devices consumed between 88% and 93% of the electricity needed during use. The annual electricity consumption to run 96 devices in a large clinical department ranges between 45 and 105 Megawatt-hours (MWh) when the devices are left in standby during off hours. If 80% of the devices are switched off during off hours, between 20 and 46 MWh can be saved per year in a single institution. At the average emission factor of our hospital, this electricity saving corresponds to a reduction of GHG emissions between 8.5 and 19.8 tons CO2-equivalent. At the assumed prices, a cost reduction between 5000 € and 11,600 € could be achieved by this intervention. Conclusion The power consumption varies considerably between the different types of anesthesia workstations. All devices exhibit a high electricity consumption in standby mode. Avoiding standby mode during off hours can save energy and thus GHG emissions and cost. The reductions in GHG emissions and electricity cost that can be achieved with this intervention in a large anesthesiology department are modest. Compared with GHG emissions generated by volatile anesthetics, particularly desflurane, optimization of electricity consumption of anesthesia workstations holds a much smaller potential to reduce the carbon footprint of anesthesia; however, as switching off anesthesia workstations overnight is relatively effortless, this behavioral change should be encouraged from both an ecological and economical point of view.

Funder

Universitätsklinikum Köln

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3