Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici

Author:

Geremia Felipe,Paim Igor,da Silva Camargo Matheus,Schrank Augusto,Sbaraini NicolauORCID

Abstract

AbstractThe take-all disease is one of the most important maladies in cereals and grasses, being caused by the fungus Gaeumannomyces tritici. Secondary metabolites are known to perform critical functions during the infection process of various phytopathogens. However, the current understanding of the biosynthesis of secondary metabolites in G. tritici is limited. Similarly, comprehensive analyses of the expression, conservation, and evolution of these biosynthesis-related genes are crucial for enhancing our knowledge of the molecular mechanisms that drive the development of the take-all disease. Here we have performed a deep survey and description of secondary metabolite biosynthetic gene clusters in G. tritici, analyzed a previously published RNA-seq of a mimicked infection condition, and assessed the conservation among 10 different Magnaporthales order members. Notably, the majority of the 35 putative gene clusters identified were conserved among these species, with GtPKS1, GtPKS3, and GtTERP4 uniquely identified in G. tritici. In the mimicked infection condition, seven gene clusters, including the GtPKS1 cluster, exhibited upregulated expression. Through comparative genomic analysis, GtPKS1 was associated with the production of dichlorodiaporthin, a metabolite with cytotoxic and antifungal activity. In addition, GtPKS10 and GtPKSNRPS3 showed similarities to already characterized biosynthetic pathways involved in the synthesis of ACR-toxin (phytotoxic) and trichosetin (phytotoxic and antibiotic), respectively. These three gene clusters were further scrutinized through phylogenetic inference, which revealed the distribution of orthologous sequences across various plant-associated fungi. Finally, the detailed identification of several genes enrolled in secondary metabolite biosynthesis provides the foundation for future in-depth research, supporting the potential impact of several small molecules on G. tritici lifecycle and host interactions.

Funder

University of Western Australia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3