The influence of 3D printing on inter- and intrarater reliability on the classification of tibial plateau fractures

Author:

Dust Tobias,Hartel Maximilian J.,Henneberg Julian-Elias,Korthaus Alexander,Ballhause Tobias Malte,Keller Johannes,Ohlmeier Malte,Maas Kai-Jonathan,Frosch Karl-Heinz,Krause MatthiasORCID

Abstract

Abstract Purpose Tibial plateau fractures continue to be a challenging task in clinical practice and current outcomes seem to provide the potential for further improvement. Especially presurgical understanding of the orientation of fracture lines and fracture severity is an essential key to sufficient surgical treatment. The object of this study was to evaluate the reliability of modern axial CT-based classification systems for tibial plateau fractures. In addition, the diagnostic-added value of 3D printing on the classification systems was investigated. Methods 22 raters were asked to classify 22 tibial plateau fractures (11 AO B- and 11 AO C-fractures) with the AO, the 10-Segment and the Revisited Schatzker classification in a three-step evaluation: first only using CT scans, second with 3D volumetric reconstructions and last with 3D-printed fracture models. Inter- and intraobserver agreement and the subjective certainty were analyzed. Statistics were done using kappa values, percentage match and a univariant one-way analysis of variance. Results The AO classifications interobserver percentage match and kappa values improved for all raters and recorded an overall value of 0.34, respectively, 43% for the 3D print. The 10-Segment classification interobserver agreement also improved with the 3D-printed models and scored an overall kappa value of 0.18 and a percentage match of 79%. Equally the Revisited Schatzker classification increased its values to 0.31 and 35%. The intraobserver agreement showed a moderate agreement for the AO (0.44) and Revisited Schatzker classification (0.42) whereas the 10-Segment classification showed a fair agreement (0.27). Additionally, the raters changed their classification in 36% of the cases after evaluating the fracture with the 3D-printed models and the subjective certainty regarding the decisions improved as categories of self-reliant diagnostic choices were selected 18% (p < 0.05) more often after using the 3D-printed models. Conclusion Based on the measured outcomes it was concluded that the new classification systems show an overall slight to fair reliability and the use of 3D printing proved to be beneficial for the preoperative diagnostics of tibial plateau fractures. The 10-Segment classification system showed the highest percentage match evaluation of all classification systems demonstrating its high clinical value across all levels of user experience.

Funder

Deutsche Kniegesellschaft

Universitätsklinikum Hamburg-Eppendorf (UKE)

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine,Orthopedics and Sports Medicine,Emergency Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3