Genome-wide identification and characterization of grapevine UFD1 genes during berry development and salt stress response

Author:

Wei LingzhuORCID,Cheng Jianhui,Xiang Jiang,Wu Jiang

Abstract

AbstractGrapevine (Vitis vinifera) is widely applicated in food industry, which shows high economical and nutritional values. However, growth of grapevine was usually affected by various environmental stresses, such as salt, drought and disease. Ubiquitin fusion degradation protein 1 (UFD1) is an essential ubiquitin-recognition protein facilitates regulation of stress response through ERAD pathway. Even though, a comprehensive investigation of UFD1 genes in the plant species is still lacking. Here we identified three VvUFD1 proteins from genome of grapevine, which were assigned into different subgroups. All VvUFD1 genes contain highly conserved motifs in structure. Several cis-elements that related to fruit development and stress response were found in the promoter regions of VvUFD1 genes, including bHLH, NCA, MYB, HD-ZIP, GATA and AP2. Expression analysis found VvUFD1 genes showed different expression patterns in different tissues. Most importantly, VvUFD1 genes were found to be involved in salt stress response during growth of grapevine. Transcriptomic analyses were investigated for further understanding the genes’ function. Expression of VvUFD1 were increased at late stage of berry ripening. In addition, expression of VvUFD1 were also regulated by elevated light treatment and pathogen Neofusicoccum parvum infection. Co-expression network analysis revealed several major transcription factors that co-expressed with VvUFD1 genes. These results provide a basis for investigating the function of UFD1 genes in plant species and expand understanding of the regulation of berry development and salt stress response in grapevine.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Key Project for New Agricultural Cultivar Breeding in Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3