Behavior, design, and modeling of structural walls and coupling beams — Lessons from recent laboratory tests and earthquakes

Author:

Wallace John W.

Abstract

Abstract Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-111 can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

Reference77 articles.

1. American Concrete Institute. Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11), Farmington Hills, Michigan, 2011.

2. Orakcal, K., Conte, J. P., and Wallace, J. W., “Flexural Modeling of Reinforced Concrete Walls — Model Attributes,” ACI Structural Journal, Vol. 101, No. 5, 2004, pp. 688–698.

3. Kabeyasawa, T., Shiohara, H., Otani, S., and Aoyama, H., “Analysis of the Full-Scale Seven-Story Reinforced Concrete Test Structure”, Journal of the Faculty of Engineering, The University of Tokyo (B), Vol. 37, No. 2, 1983, pp. 431–478.

4. Fischinger, M., Vidic, T., Selih, J., Fajfar, P., Zhang. H. Y., and Damjanic, F. B., “Validation of a Macroscopic Model for Cyclic Response Prediction of RC Walls,” in N.B. Bicanic and H. Mang (eds.), “Computer Aided Analysis and Design of Concrete Structures,” Pineridge Press, Swansea, Vol. 2, 1990, pp. 1131–1142.

5. Colotti, V., “Shear Behavior of RC Structural Walls”, Journal of Structural Engineering, ASCE, Vol. 119, No. 3, 1993, pp. 728–746.

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3