Abstract
AbstractStudies of melatonin photoreactivity in water solutions: An effect of an external heavy atom I− on UV/Vis absorption, fluorescence and phosphorescence spectra is explored. The data allowed determination of relevant energetics for the system.The heavy atom effect (HAE) of I− on melatonin is clearly found to induce an intersystem crossing from the lowest energy singlet state to the lowest energy triplet state (T1) by a state mixing. Lifetime for the first excited triplet states of melatonin in association with I− and quenching rates for halomethanes (CH2X2, CHX3, CY4, X = Cl, Br, Y = Cl) are determined from Time-Correlated Single-Photon Counting decay curves for the phosphorescence. Dramatic alterations in quenching rate constants with quenchers as CH2X2 < CHX3 < CX4 and Cl < Br are attributed to energy transfer from an I−…Me*(T1) complex to low-lying electronic states of the halomethanes followed by dissociation to form R and X fragments. Relevance of the melatonin photoreactivity to photosensitizer properties in organic media is discussed.
Graphical abstract
Funder
Icelandic Centre for Research
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry