The anti-COVID-19 drug Favipiravir: Degradation, Method development, Validation, NMR/LC–MS characterization, and In-vitro safety evaluation

Author:

Abdallah Inas A.,El-Behairy Mohammed F.,Ahmed Rasha M.,Fayed Marwa A. A.ORCID

Abstract

AbstractIt is critical to characterize the degradation products of therapeutic drugs to determine their safety as these degradation products may possess fatal effects on the human physiological system. Favipiravir (FVP), a novel anti-Covid-19 drug, that is recently used all over the world with a great impact on humanity was our target to explore more about its toxicity, the margins of its safety, and its degradants in different degradation conditions. The goal of this study is to identify, characterize, and confirm the structures of FVP oxidative and alkaline breakdown products, as well as to assess their safety utilizing in-vitro SRB cytotoxicity assay on normal human skin fibroblasts (NHSF) cell lines. After oxidative and alkaline degradation of FVP, one degradation product was produced in each condition which was isolated from FVP using flash chromatography, characterized by 1HNMR and LC–MS/MS techniques. A reversed-phase Thermo Fischer Hypersil C18 column (4.6 × 150 mm, 5 m) was used to achieve HPLC chromatographic separation. Acetonitrile-5 mM potassium dihydrogen phosphate (pH 2.5) (50:50, v/v) was employed as the mobile phase, with a flow rate of 1 mL/min. At 332 nm, the column effluent was measured. Over the concentration range of 0.5–100 µg/mL, the calibration curve was linear. The intra-day and inter-day relative standard deviations were less than 2%, and good percentage recoveries were obtained that fulfilled the acceptance criteria of the International Conference on Harmonization (ICH) recommendations. The Plackett–Burman design was used to assess the robustness. Each degradant was isolated single using Flash chromatography and methylene chloride: methanol gradient mobile phase. The chemical structures of the degradation products have been confirmed and compared to the intact FVP using 1H-NMR, and Mass spectroscopy. A postulated mechanism of the degradation process has been depicted and the degradants fragmentation pattern has been portrayed. In addition, the in vitro SRB cytotoxicity assay to evaluate the safety profile of FVP and the degradation end products showed their high safety margin in both conditions with IC50 ˃100 µg/ml with no signs of toxicity upon examination of the treated NHSF cells under the optical microscope

Funder

University of Sadat City

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3