Graphene oxide quantum dots membrane: a hybrid filtration-advanced technology system to enhance process of wastewater reclamation

Author:

Tshangana Charmaine,Muleja AdolphORCID

Abstract

AbstractThe inability of wastewater treatment plants to effectively remove emerging pollutants has necessitated the need to develop newer advanced technologies. An integrated approach of combining advanced oxidation processes (AOPs) and membrane technologies promises superior performances. In this study, graphene oxide quantum dots-based membranes (GQDs-Ms) were fabricated via the phase inversion method. The GQDs-Ms revealed high oxygen content and a negative surface charge. The incorporating graphene oxide quantum dots (GQDs) into the polymer matrix led to enhanced hydrophilicity, pore size, porosity, improved flux as well as superior inhibition of Escherichia coli cells. A multi-AOPs approach was used in this work, wherein AOPs were applied as both pre-treatment (using GQDs) and post-treatment (combining GQDs with peracetic acid) in the disinfection of wastewater. The evaluation of GQDs-Ms performance was carried out and compared with a commercial membrane (Film Tec™NF270). The obtained % removals with GQDs-Ms were 83.45%, 64.12%, 40.76% and 70.36% for turbidity, total dissolved solids, total organic carbon and electrical conductivity, respectively, which compared nearly with commercial membrane’s performance. Interestingly, the integrated hybrid system can further remove and inactivate microbes in wastewater. The developed hybrid filtration-advanced technology system can substantially improve conventional wastewater treatment plants for water reuse.

Funder

University of South Africa

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3