PCB-waste derived resin as a binary ion exchanger for zinc removal: Isotherm modelling and adsorbent optimization

Author:

Zuhara ShifaORCID,McKay Gordon

Abstract

AbstractEffective removal of heavy metals from wastewaters can enable increased reuse of treated wastewater and reduce water scarcity worldwide. This paper describes the results of an initial study on zinc removal using waste-derived aluminosilicate-based material by binary ion exchange with calcium and potassium. About 2 mmol/g of zinc removal adsorption capacity was demonstrated using the aluminosilicate resin. Seven equilibrium isotherm models have been analyzed using the zinc adsorption data; the best fit to the experimental values based on the lowest SSE error was the SIPS model. A mechanism between zinc adsorption and the calcium and potassium desorption has been developed and modelled and is confirmed based on the mass balance analysis between the divalent calcium ions and the monovalent potassium ions exchanged with the divalent zinc ions adsorbed. Desorption studies using isotherm model equations for the calcium and potassium data further confirmed the mechanism. Regeneration was over 80% per cycle for three acid regenerations, indicating the zinc can be recovered for re-use. Furthermore, optimization using the SIPS model showed the minimum amount of adsorbent required using a two-stage reactor system is much lower, proving the need for a two-stage reactor to make the system more economical. Future experiments on multicomponent analysis and further optimization will help develop this adsorbent for real water systems.

Funder

Qatar National Research Fund

Hamad bin Khalifa University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3