Iron chelates in the anticancer therapy

Author:

Szlasa WojciechORCID,Gachowska Martyna,Kiszka Karolina,Rakoczy Katarzyna,Kiełbik AleksanderORCID,Wala Kamila,Puchała Julia,Chorążykiewicz Katarzyna,Saczko JolantaORCID,Kulbacka JulitaORCID

Abstract

AbstractIron plays a significant role in the metabolism of cancer cells. In comparison with normal cells, neoplastic ones exhibit enhanced vulnerability to iron. Ferric ions target tumor via the ferroptotic death pathway—a process involving the iron-mediated lipid oxidation. Ferric ion occurs in complex forms in the physiological conditions. Apart from iron, ligands are the other factors to affect the biological activity of the iron complexes. In recent decades the role of iron chelates in targeting the growth of the tumor was extensively examined. The ligand may possess a standalone activity to restrict cancer’s growth. However, a wrong choice of the ligand might lead to the enhanced cancer cell’s growth in in vitro studies. The paper aims to review the role of iron complex compounds in the anticancer therapy both in the experimental and clinical applications. The anticancer properties of the iron complex rely both on the stability constant of the complex and the ligand composition. When the stability constant is high, the properties of the drug are unique. However, when the stability constant remains low, both components—ferric ions and ligands, act separately on the cells. In the paper we show how the difference in complex stability implies the action of ligand and ferric ions in the cancer cell. Iron complexation strategy is an interesting attempt to transport the anticancer Fe2+/3+ ions throughout the cell membrane and release it when the pH of the microenvironment changes. Last part of the paper summarizes the results of clinical trials and in vitro studies of novel iron chelates such as: PRLX 93,936, Ferumoxytol, Talactoferrin, DPC, Triapine, VLX600, Tachypyridine, Ciclopiroxamine, Thiosemicarbazone, Deferoxamine and Deferasirox.

Funder

Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3