Abstract
AbstractTwo compound derived from fused Pyrazolo-Triazolo-Pyrimidine (C1 and C2), have inhibitory action against corrosion of Zinc in 1 M HNO3 examined experimentally by electrochemical tests and theoretically by density functional theory (DFT). The findings demonstrate that zinc corrodes in acidic conditions with greater corrosion resistance than C1 and C2. Concentration and corrosion inhibition directly relate to one another. The two Pyrazolopyrimidine-derived compounds had optimum inhibition efficiency of 92.06 and 79.36% for C1 and C2, respectively, at 700 ppm. In accordance to the polarization curves, the antagonists feature a mixed but primarily anodic inhibitor and a Langmuir process. DFT computations validated the compounds apparent antagonistic response. SEM also show the development of a barrier on the zinc surface. In conclusion, these two antagonists, C1 and C2, are successful in avoiding zinc dissolution in HNO3.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献