Photocatalytic degradation of non-ionic, anionic, and cationic surfactants: from batch experiments through equilibrium/kinetic study to ecotoxicology analysis

Author:

Wysokowska Klaudia,Cupiał Zuzanna,Staszak Maciej,Zgoła-Grześkowiak Agnieszka,Koziolek Jan,Ławniczak Łukasz,Wysokowski Marcin,Wyrwas Bogdan

Abstract

AbstractSurface-active compounds constitute a group of important and widespread environmental pollutants. Among different methods used for their treatment, photocatalytic degradation is a promising and efficient solution. Nevertheless, the exact outcome of photodegradation of surfactants may be difficult to predict in case of concentrations used at the industrial scale and considering that the associated mechanism involves radicals which may potentially result in the formation of toxic by-products. In consequence, the aim of this study was to analyze the catalytic photodegradation of three groups of surfactants (three structurally diverse representatives of cationic, anionic, and non-ionic surfactants). Nanoparticles of zinc oxide were synthesized and used as a photocatalyst. The efficiency of photodegradation ranged from 93 to 100% at 10 mg/L, from 38 to 94% at 100 mg/L, and from 15 to 66% when the surfactants were supplied at 1000 mg/L, and the results depended on the structure of the compound subjected to treatment. Subsequent investigation of kinetics revealed that Freundlich, Langmuir or Dubinin-Radushkevich isotherms may be used to describe the adsorption of surfactants (1–65%) and allowed to establish the following order of reactivity: cationic > non-ionic > anionic. Subsequent LC–MS/MS studies of the residues were the basis for identification of photodegradation products for each respective compound. Ultimately, due to the fact that treated graywater is often used as potable water, the phytotoxicity of the degradation products was tested toward sorghum. It was established that in the majority of cases the treatment was efficient (in some cases stimulation of plant growth compared to control samples was observed), whereas an increase in toxicity was observed in case of two cationic surfactants (CTAB and benzalkonium chloride). Overall, the results presented in this study support the application of photocatalytic degradation as an efficient solution for treatment of surfactant-rich effluents.

Funder

Ministerstwo Edukacji i Nauki

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3