1. Du, M., Liu, N., & Hu, X. (2018). Techniques for interpretable machine learning. arXiv preprint arXiv:1808.00033.
2. Hall, P., & Gill, N. (2019). An introduction to machine learning interpretability. Second edition. Sebastopol, CA: O'Reilly Media, Incorporated.
3. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144). ACM.
4. Russell, S. (n.d.). Human compatible: Artificial intelligence and the problem of control, Penguin Publishing Group. Kindle Edition.
5. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.S., & Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine learning (pp. 2048-2057).