Deep learning of DEM image texture for landform classification in the Shandong area, China
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s11707-021-0884-y.pdf
Reference60 articles.
1. Ahmed J, Ahmed H (2019). Assessing performance of convolutional features for terrain classification using remote sensing data. In: 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE). IEEE, 2019: 178–183
2. Arrell K E, Fisher P F, Tate N J, Bastin L (2007). A fuzzy c-means classification of elevation derivatives to extract the morphometric classification of landforms in Snowdonia, Wales. Comput Geosci, 33(10): 1366–1381
3. Band L E (1986). Topographic partition of watersheds with digital elevation models. Water Resour Res, 22(1): 15–24
4. Basu S, Mukhopadhyay S, Karki M, DiBiano R, Ganguly S, Nemani R, Gayaka S (2018). Deep neural networks for texture classification—A theoretical analysis. Neural Netw, 97: 173–182
5. Bricher P K, Lucieer A, Shaw J, Terauds A, Bergstrom D M (2013). Mapping sub-antarctic cushion plants using random forests to combine very high resolution satellite imagery and terrain modelling. PLoS One, 8(8): e72093
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Combined Use of GIS and Generative Artificial Intelligence in Detecting Potential Geodiversity Sites and Promoting Geoheritage;Resources;2024-08-27
2. Detection of karst depression in Brazil comparing different semantic and instance segmentations and global digital elevation models;Geomorphology;2024-07
3. Supervised classification of morphodiversity using artificial neural networks on the example of the Pieniny Mts (Poland);CATENA;2024-07
4. Cartography and Neural Networks: A Scientometric Analysis Based on CiteSpace;ISPRS International Journal of Geo-Information;2024-05-29
5. Delineation and Classification of Wetlands in the Northern Jarrah Forest, Western Australia Using Remote Sensing and Machine Learning;Wetlands;2024-05-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3