Abstract
AbstractSatellite altimetry and gravimetry are used to determine the mean seasonal cycle in relative sea level, a quantity relevant to coastal flooding and related applications. The main harmonics (annual, semiannual, terannual) are estimated from 25 years of gridded altimetry, while several conventional altimeter “corrections” (gravitational tide, pole tide, and inverted barometer) are restored. To transform from absolute to relative sea levels, a model of vertical land motion is developed from a high-resolution seasonal mass inversion estimated from satellite gravimetry. An adjustment for annual geocenter motion accounts for use of a center-of-mass reference frame in satellite orbit determination. A set of 544 test tide gauges, from which seasonal harmonics have been estimated from hourly measurements, is used to assess how accurately each adjustment to the altimeter data helps converge the results to true relative sea levels. At these gauges, the median annual and semiannual amplitudes are 7.1 cm and 2.2 cm, respectively. The root-mean-square differences with altimetry are 3.24 and 1.17 cm, respectively, which are reduced to 1.93 and 0.86 cm after restoration of corrections and adjustment for land motion. Example outliers highlight some limitations of present-day coastal altimetry owing to inadequate spatial resolution: upwelling and currents off Oregon and wave setup at Minamitori Island.
Funder
National Aeronautics and Space Administration
Publisher
Springer Science and Business Media LLC
Subject
Computers in Earth Sciences,Geochemistry and Petrology,Geophysics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献