Feasibility of a global inversion for spatially resolved glacial isostatic adjustment and ice sheet mass changes proven in simulation experiments

Author:

Willen Matthias O.ORCID,Horwath MartinORCID,Groh AndreasORCID,Helm VeitORCID,Uebbing BerndORCID,Kusche JürgenORCID

Abstract

AbstractEstimating mass changes of ice sheets or of the global ocean from satellite gravimetry strongly depends on the correction for the glacial isostatic adjustment (GIA) signal. However, geophysical GIA models are different and incompatible with observations, particularly in Antarctica. Regional inversions have resolved GIA over Antarctica without ensuring global consistency, while global inversions have been mostly constrained by a priori GIA patterns. For the first time, we set up a global inversion to simultaneously estimate ice sheet mass changes and GIA, where Antarctic GIA is spatially resolved using a set of global GIA patterns. The patterns are related to deglaciation impulses localized along a grid over Antarctica. GIA associated with four regions outside Antarctica is parametrized by global GIA patterns induced by deglaciation histories. The observations we consider here are satellite gravimetry, satellite altimetry over Antarctica and Greenland, as well as modelled firn thickness changes. Firn thickness changes are also parametrized to account for systematic errors in their modelling. Results from simulation experiments using realistic signals and error covariances support the feasibility of the approach. For example, the spatial RMS error of the estimated Antarctic GIA effect, assuming a 10-year observation period, is 31% and 51%, of the RMS of two alternative global GIA models. The integrated Antarctic GIA error is 8% and 5%, respectively, of the integrated GIA signal of the two models. For these results realistic error covariances incorporated in the parameter estimation process are essential. If error correlations are neglected, the Antarctic GIA RMS error is more than twice as large.Highlights$$\bullet $$ We present a globally consistent inversion approach to co-estimate glacial isostatic adjustment effects together with changes of the ice mass and firn air content in Greenland and Antarctica. $$\bullet $$ The inversion method utilizes data sets from satellite gravimetry, satellite altimetry, regional climate modelling, and firn modelling together with the full error-covariance information of all input data. $$\bullet $$ The simulation experiments show that the proposed GIA parametrization in Antarctica can resolve GIA effects unpredicted by geophysical modelling, despite realistic input-data limitations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3