The Generalized Method of Wavelet Moments with eXogenous inputs: a fast approach for the analysis of GNSS position time series

Author:

Cucci Davide A.ORCID,Voirol LionelORCID,Kermarrec GaëlORCID,Montillet Jean-PhilippeORCID,Guerrier StéphaneORCID

Abstract

AbstractThe global navigation satellite system (GNSS) daily position time series are often described as the sum of stochastic processes and geophysical signals which allow to study global and local geodynamical effects such as plate tectonics, earthquakes, or ground water variations. In this work, we propose to extend the Generalized Method of Wavelet Moments (GMWM) to estimate the parameters of linear models with correlated residuals. This statistical inferential framework is applied to GNSS daily position time-series data to jointly estimate functional (geophysical) as well as stochastic noise models. Our method is called GMWMX, with X standing for eXogenous variables: it is semi-parametric, computationally efficient and scalable. Unlike standard methods such as the widely used maximum likelihood estimator (MLE), our methodology offers statistical guarantees, such as consistency and asymptotic normality, without relying on strong parametric assumptions. At the Gaussian model, our results (theoretical and obtained in simulations) show that the estimated parameters are similar to the ones obtained with the MLE. The computational performances of our approach have important practical implications. Indeed, the estimation of the parameters of large networks of thousands of GNSS stations (some of them being recorded over several decades) quickly becomes computationally prohibitive. Compared to standard likelihood-based methods, the GMWMX has a considerably reduced algorithmic complexity of order $$\mathcal {O}\{\log (n) n\}$$ O { log ( n ) n } for a time series of length n. Thus, the GMWMX appears to provide a reduction in processing time of a factor of 10–1000 compared to likelihood-based methods depending on the considered stochastic model, the length of the time series and the amount of missing data. As a consequence, the proposed method allows the estimation of large-scale problems within minutes on a standard computer. We validate the performances of our method via Monte Carlo simulations by generating GNSS daily position time series with missing observations and we consider composite stochastic noise models including processes presenting long-range dependence such as power law or Matérn processes. The advantages of our method are also illustrated using real time series from GNSS stations located in the Eastern part of the USA.

Funder

Deutsche Forschungsgemeinschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Innosuisse - Schweizerische Agentur für Innovationsförderung

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3