Measuring 1-mm-accurate local survey ties over kilometer baselines at McDonald Geodetic Observatory

Author:

Rivera JullianORCID,Bettadpur Srinivas,Griffin John,Kang Zhigui,Ries John

Abstract

AbstractThe goal for the next generation of terrestrial reference frames (TRF) is to achieve a 1-mm- and 0.1-mm/yr-accurate frame realization through the combination of reference station solutions by multi-technique geodetic observatories. A potentially significant source of error in TRF realizations is the inter-system ties between the instruments at multi-technique stations, usually independently determined through ground-based local surveying. The quality of local tie surveys is varied and inconsistent, largely due to differences in measurement techniques, surveying instruments, site conditions/geometries, and processing methods. The Global Geodetic Observing System (GGOS) has tried to address these problems by issuing guidelines for the construction and layout of future multi-technique observatories, promoting uniformity and quality while minimizing existing problems with local surveying that are exacerbated over longer baseline distances. However, not every observatory is going to be able to completely satisfy these guidelines, and in this work, a successful endeavor to satisfy the accuracy goals while exceeding the GGOS baseline guideline is detailed for the McDonald Geodetic Observatory (MGO) in the Davis Mountains of Texas, USA. MGO consists of a VLBI Geodetic Observing System (VGOS), infrastructure in place for a Space Geodesy Satellite Laser Ranging (SGSLR) telescope, and several Global Navigation Satellite Systems (GNSS) stations spanning a 900 m baseline and a 120 m elevation change. The results of the local ties between the GNSS stations across the near-kilometer baseline, as measured from their antenna reference points, show sub-mm precision and 1 mm accuracy validated through repeatability across several surveys conducted in 2021as well as 1 mm consistency with the monthly averaged daily solutions of the GNSS-based positioning. In this paper, we report these results as well as the framework of the surveys with sufficient detail and rigor in order to give confidence to the quality claims and to present the novel design and techniques employed in the procedure, processing, and error-budget analysis, which were determined through iterative research methods across repeated survey campaigns.

Funder

National Geospatial-Intelligence Agency

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3