Reprocessed precise science orbits and gravity field recovery for the entire GOCE mission

Author:

Arnold DanielORCID,Grombein ThomasORCID,Schreiter LucasORCID,Sterken VeerleORCID,Jäggi Adrian

Abstract

AbstractESA’s Gravity field and steady-state Ocean Circulation Explorer (GOCE) orbited the Earth between 2009 and 2013 for the determination of the static part of Earth’s gravity field. The GPS-derived precise science orbits (PSOs) were operationally generated by the Astronomical Institute of the University of Bern (AIUB). Due to a significantly improved understanding of remaining artifacts after the end of the GOCE mission (especially in the GOCE gradiometry data), ESA initiated a reprocessing of the entire GOCE Level 1b data in 2018. In this framework, AIUB was commissioned to recompute the GOCE reduced-dynamic and kinematic PSOs. In this paper, we report on the employed precise orbit determination methods, with a focus on measures undertaken to mitigate ionosphere-induced artifacts in the kinematic orbits and thereof derived gravity field models. With respect to the PSOs computed during the operational phase of GOCE, the reprocessed PSOs show in average a 8–9% better consistency with GPS data, 31% smaller 3-dimensional reduced-dynamic orbit overlaps, an 8% better 3-dimensional consistency between reduced-dynamic and kinematic orbits, and a 3–7% reduction of satellite laser ranging residuals. In the second part of the paper, we present results from GPS-based gravity field determinations that highlight the strong benefit of the GOCE reprocessed kinematic PSOs. Due to the applied data weighting strategy, a substantially improved quality of gravity field coefficients between degree 10 and 40 is achieved, corresponding to a remarkable reduction of ionosphere-induced artifacts along the geomagnetic equator. For a static gravity field solution covering the entire mission period, geoid height differences with respect to a superior inter-satellite ranging solution are markedly reduced (43% in terms of global RMS, compared to previous GOCE GPS-based gravity fields). Furthermore, we demonstrate that the reprocessed GOCE PSOs allow to recover long-wavelength time-variable gravity field signals (up to degree 10), comparable to information derived from GPS data of dedicated satellite missions. To this end, it is essential to take into account the GOCE common-mode accelerometer data in the gravity field recovery.

Funder

European Research Council

European Space Agency

Karlsruhe Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3