A novel ionospheric TEC mapping function with azimuth parameters and its application to the Chinese region

Author:

Huo XingliangORCID,Long Yuanliang,Liu Haojie,Yuan Yunbin,Liu Qi,Li Ying,Liu Mingming,Liu Yanwen,Sun Weihong

Abstract

AbstractThe ionospheric mapping function (MF) for Global Navigation Satellite System (GNSS), a mutual projection method for the slant total electron content (STEC) and vertical total electron content, is one of the significant factors affecting the performance of ionospheric models. The commonly used MF assumes isotropic TEC variations and takes into account only the satellite elevation angle, which may result in significant ionospheric projection errors, especially at low elevation angles. Based on the single-layer model, we propose an additional azimuth parameter mapping function (APMF). The APMF was estimated and evaluated by the NeQuick model during the periods of January 2014 and January 2022 from the aspect of simulation and measured STEC during the periods of 2014 and 2022 from the aspect of actual measurements over China, respectively. Compared to the modified single-layer model mapping function (MSLM-MF), the experimental results indicate that (1) The APMF can significantly reduce the ionospheric projection error, and the fluctuation in errors with different azimuth angles is small. (2) According to the evaluation based on the NeQuick simulation during the TEC peak time, when the ionosphere is quite active, the upper and lower quartiles of the absolute projection error boxplot of the APMF relative to the MSLM-MF in January 2014 are reduced by 56.1% and 60.0%, respectively, and in January 2022, they are reduced by 67.7% and 65.2%, respectively. Similarly, the upper whiskers in the boxplot are reduced by 54.7% and 67.5% in January 2014 and January 2022, respectively; the APMF performance in terms of the root mean square error (RMSE) is improved by 47.0% in January 2014 and 58.3% in January 2022. (3) According to the evaluation based on the measured STEC from GNSS raw data during the TEC peak time, the upper and lower quartiles of the absolute mapping error boxplot of the APMF relative to the MSLM-MF in 2014 are reduced by 48.9% and 46.9%, respectively, while in 2022, they are reduced by 48.3% and 41.2%, respectively. The upper whiskers in the boxplot are reduced by 41.8% and 35.2% in 2014 and 2022, respectively; the APMF performance in terms of RMSE is improved by 44.6% in 2014 and 39.2% in 2022.

Funder

National Natural Science Foundations of China

State Key Laboratory of Geodesy and Earth's Dynamics, Chinese Academy of Sciences

National Key Research and Development Program

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3