Abstract
AbstractGPS has been used to estimate ocean tide loading (OTL) height displacement amplitudes to accuracies of within 0.5 mm at the M2 frequency, but such estimation has been problematic at luni-solar K2 and K1 frequencies because they coincide with the GPS orbital period and revisit period, leading to repeating multipath and satellite orbit errors. We therefore investigate the potential of using the GLONASS constellation (with orbital period 11.26 h and true site revisit period of 8 sidereal days distinct from K2 and K1) for OTL displacement estimation, analysing 3–7 years of GPS and GLONASS data from 49 globally distributed stations. Using the PANDA software in kinematic precise point positioning mode with float ambiguities, we demonstrate that GLONASS can estimate OTL height displacement at the M2, N2, O1 and Q1 lunar frequencies with similar accuracy to GPS: 95th percentile agreements of 0.6–1.3 mm between estimated and FES2014b ocean tide model displacements. At the K2 and K1 luni-solar frequencies, 95th percentile agreements between GPS estimates and model values of 3.9–4.4 mm improved to 2.0–2.8 mm using GLONASS-only solutions. A combined GPS+GLONASS float solution improves accuracy of the lunar OTL constituents and P1 (but not significantly for K1 or K2) compared with a single-constellation solution and results in hourly-to-weekly spectral noise very similar to a GPS ambiguity-fixed solution, but without needing uncalibrated phase delay information. GLONASS estimates are more accurate at higher compared with lower latitudes because of improved satellite visibility, although this can be countered by using a lower elevation cut-off angle.
Funder
Natural Environment Research Council
Newcastle University
Publisher
Springer Science and Business Media LLC
Subject
Computers in Earth Sciences,Geochemistry and Petrology,Geophysics
Reference53 articles.
1. Abraha KE, Teferle FN, Hunegnaw A, Dach R (2018) Effects of unmodelled tidal displacements in GPS and GLONASS coordinate time-series. Geophys J Int 214(3):2195–2206. https://doi.org/10.1093/gji/ggy254
2. Agnew DC (1997) NLOADF: a program for computing ocean-tide loading. J Geophys Res 102(B3):5109–5110. https://doi.org/10.1029/96JB03458
3. Agnew DC (2012) SPOTL: some programs for ocean-tide loading. SIO Technical Report, Scripps Institution of Oceanography, http://escholarship.org/uc/item/954322pg
4. Allinson CR, Clarke PJ, Edwards SJ, King MA, Baker TF, Cruddace PR (2004) Stability of direct GPS estimates of ocean tide loading. Geophys Res Lett 31(15):L15603. https://doi.org/10.1029/2004GL020588
5. Baker TF (1984) Tidal deformations of the Earth. Sci Prog 69(247):197–233
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献