Kalman filter-based integration of GNSS and InSAR observations for local nonlinear strong deformations

Author:

Tondaś DamianORCID,Ilieva MayaORCID,van Leijen FreekORCID,van der Marel HansORCID,Rohm WitoldORCID

Abstract

AbstractThe continuous monitoring of ground deformations can be provided by various methods, such as leveling, photogrammetry, laser scanning, satellite navigation systems, Synthetic Aperture Radar (SAR), and many others. However, ensuring sufficient spatiotemporal resolution of high-accuracy measurements can be challenging using only one of the mentioned methods. The main goal of this research is to develop an integration methodology, sensitive to the capabilities and limitations of Differential Interferometry SAR (DInSAR) and Global Navigation Satellite Systems (GNSS) monitoring techniques. The fusion procedure is optimized for local nonlinear strong deformations using the forward Kalman filter algorithm. Due to the impact of unexpected observations discontinuity, a backward Kalman filter was also introduced to refine estimates of the previous system’s states. The current work conducted experiments in the Upper Silesian coal mining region (southern Poland), with strong vertical deformations of up to 1 m over 2 years and relatively small and horizontally moving subsidence bowls (200 m). The overall root-mean-square (RMS) errors reached 13, 17, and 35 mm for Kalman forward and 13, 17, and 34 mm for Kalman backward in North, East, and Up directions, respectively, in combination with an external data source - GNSS campaign measurements. The Kalman filter integration outperformed standard approaches of 3-D GNSS estimation and 2-D InSAR decomposition.

Funder

EPOS-PL+ project

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3