DeepECT: The Deep Embedded Cluster Tree

Author:

Mautz DominikORCID,Plant Claudia,Böhm Christian

Abstract

AbstractThe idea of combining the high representational power of deep learning techniques with clustering methods has gained much attention in recent years. Optimizing a clustering objective and the dataset representation simultaneously has been shown to be advantageous over separately optimizing them. So far, however, all proposed methods have been using a flat clustering strategy, with the actual number of clusters known a priori. In this paper, we propose the Deep Embedded Cluster Tree (DeepECT), the first divisive hierarchical embedded clustering method. The cluster tree does not need to know the actual number of clusters during optimization. Instead, the level of detail to be analyzed can be chosen afterward and for each sub-tree separately. An optional data-augmentation-based extension allows DeepECT to ignore prior-known invariances of the dataset, such as affine transformations in image data. We evaluate and show the advantages of DeepECT in extensive experiments.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computational Mechanics

Reference30 articles.

1. Caron M, Bojanowski P, Joulin A, Douze M (2018) Deep clustering for unsupervised learning of visual features. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer Vision—ECCV—15th European conference, Munich, Germany, 8–14 September 2018, Proceedings, Part XIV, ser. Lecture notes in computer science, vol 11218. Springer, pp 139–156. https://doi.org/10.1007/978-3-030-01264-9_9

2. Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. CoRR, vol abs/1712.04621 . arXiv:1712.04621

3. Xie J, Girshick RB, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In: Balcan M, Weinberger KQ (eds) Proceedings of the 33nd international conference on machine learning, ICML , New York City, NY, USA, 19–24 June 2016, ser. JMLR workshop and conference proceedings, vol 48. JMLR.org, 2016, pp 478–487. http://proceedings.mlr.press/v48/xieb16.html

4. van der Maaten L (2009) Learning a parametric embedding by preserving local structure. In: Dyk DAV, Welling M (eds) Proceedings of the twelfth international conference on artificial intelligence and statistics, AISTATS , Clearwater Beach, Florida, USA, 16–18 April 2009, ser. JMLR Proceedings, vol 5. JMLR.org, 2009, pp 384–391. http://proceedings.mlr.press/v5/maaten09a.html

5. Guo X, Gao L, Liu X, Yin J (2017) Improved deep embedded clustering with local structure preservation. In: Sierra C (ed) Proceedings of the 26th international joint conference on artificial intelligence, IJCAI , Melbourne, Australia, 19–25 August 2017, ijcai.org, 2017, pp 1753–1759. https://doi.org/10.24963/ijcai.2017/243

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SSCG: Spatial Subcluster Clustering Method by Grid-Connection;Web and Big Data;2023

2. Contrastive Hierarchical Clustering;Machine Learning and Knowledge Discovery in Databases: Research Track;2023

3. QCluster: Clustering Packets for Flow Scheduling;Proceedings of the ACM Web Conference 2022;2022-04-25

4. GPSClean: A Framework for Cleaning and Repairing GPS Data;ACM Transactions on Intelligent Systems and Technology;2022-04-13

5. DBC-Forest: Deep forest with binning confidence screening;Neurocomputing;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3