1. Caron M, Bojanowski P, Joulin A, Douze M (2018) Deep clustering for unsupervised learning of visual features. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer Vision—ECCV—15th European conference, Munich, Germany, 8–14 September 2018, Proceedings, Part XIV, ser. Lecture notes in computer science, vol 11218. Springer, pp 139–156. https://doi.org/10.1007/978-3-030-01264-9_9
2. Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. CoRR, vol abs/1712.04621 . arXiv:1712.04621
3. Xie J, Girshick RB, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In: Balcan M, Weinberger KQ (eds) Proceedings of the 33nd international conference on machine learning, ICML , New York City, NY, USA, 19–24 June 2016, ser. JMLR workshop and conference proceedings, vol 48. JMLR.org, 2016, pp 478–487. http://proceedings.mlr.press/v48/xieb16.html
4. van der Maaten L (2009) Learning a parametric embedding by preserving local structure. In: Dyk DAV, Welling M (eds) Proceedings of the twelfth international conference on artificial intelligence and statistics, AISTATS , Clearwater Beach, Florida, USA, 16–18 April 2009, ser. JMLR Proceedings, vol 5. JMLR.org, 2009, pp 384–391. http://proceedings.mlr.press/v5/maaten09a.html
5. Guo X, Gao L, Liu X, Yin J (2017) Improved deep embedded clustering with local structure preservation. In: Sierra C (ed) Proceedings of the 26th international joint conference on artificial intelligence, IJCAI , Melbourne, Australia, 19–25 August 2017, ijcai.org, 2017, pp 1753–1759. https://doi.org/10.24963/ijcai.2017/243