OODIDA: On-Board/Off-Board Distributed Real-Time Data Analytics for Connected Vehicles

Author:

Ulm GregorORCID,Smith Simon,Nilsson Adrian,Gustavsson Emil,Jirstrand Mats

Abstract

AbstractA fleet of connected vehicles easily produces many gigabytes of data per hour, making centralized (off-board) data processing impractical. In addition, there is the issue of distributing tasks to on-board units in vehicles and processing them efficiently. Our solution to this problem is On-board/Off-board Distributed Data Analytics (OODIDA), which is a platform that tackles both task distribution to connected vehicles as well as concurrent execution of tasks on arbitrary subsets of edge clients. Its message-passing infrastructure has been implemented in Erlang/OTP, while the end points use a language-independent JSON interface. Computations can be carried out in arbitrary programming languages. The message-passing infrastructure of OODIDA is highly scalable, facilitating the execution of large numbers of concurrent tasks.

Funder

VINNOVA

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computational Mechanics

Reference25 articles.

1. Chen D, Zhao H (2012) Data security and privacy protection issues in cloud computing. In: 2012 international conference on computer science and electronics engineering (ICCSEE). IEEE, vol 1, pp 647–651

2. Chollet F, et al (2015) Keras: deep learning library for theano and tensorflow, vol 7, no 8. https://keras.io/k

3. Coppola R, Morisio M (2016) Connected car: technologies, issues, future trends. ACM Comput Surv 49(3):46

4. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113

5. (EU) R (2016) Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec (general data protection regulation). Off J Eur Union L119: 1–88

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3