Smart Intra-query Fault Tolerance for Massive Parallel Processing Databases

Author:

Ji YunhongORCID,Chai Yunpeng,Zhou Xuan,Ren Lipeng,Qin Yajie

Abstract

AbstractIntra-query fault tolerance has increasingly been a concern for online analytical processing, as more and more enterprises migrate data analytical systems from mainframes to commodity computers. Most massive parallel processing (MPP) databases do not support intra-query fault tolerance. They may suffer from prolonged query latency when running on unreliable commodity clusters. While SQL-on-Hadoop systems can utilize the fault tolerance support of low-level frameworks, such as MapReduce and Spark, their cost-effectiveness is not always acceptable. In this paper, we propose a smart intra-query fault tolerance (SIFT) mechanism for MPP databases. SIFT achieves fault tolerance by performing checkpointing, i.e., materializing intermediate results of selected operators. Different from existing approaches, SIFT aims at promoting query success rate within a given time. To achieve its goal, it needs to: (1) minimize query rerunning time after encountering failures and (2) introduce as less checkpointing overhead as possible. To evaluate SIFT in real-world MPP database systems, we implemented it in Greenplum. The experimental results indicate that it can improve success rate of query processing effectively, especially when working with unreliable hardware.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computational Mechanics

Reference33 articles.

1. Teradata. https://www.teradata.com/

2. Greenplum. http://greenplum.org/

3. Vertica. https://www.vertica.com/

4. Apache Impala. https://impala.apache.org/

5. Apache HAWQ. http://hawq.incubator.apache.org/

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3