Uncovering Flat and Hierarchical Topics by Community Discovery on Word Co-occurrence Network

Author:

Austin EricORCID,Makwana Shraddha,Trabelsi AmineORCID,Largeron ChristineORCID,Zaïane Osmar R.ORCID

Abstract

AbstractTopic modeling aims to discover latent themes in collections of text documents. It has various applications across fields such as sociology, opinion analysis, and media studies. In such areas, it is essential to have easily interpretable, diverse, and coherent topics. An efficient topic modeling technique should accurately identify flat and hierarchical topics, especially useful in disciplines where topics can be logically arranged into a tree format. In this paper, we propose Community Topic, a novel algorithm that exploits word co-occurrence networks to mine communities and produces topics. We also evaluate the proposed approach using several metrics and compare it with usual baselines, confirming its good performances. Community Topic enables quick identification of flat topics and topic hierarchy, facilitating the on-demand exploration of sub- and super-topics. It also obtains good results on datasets in different languages.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institute for Advanced Research

Alberta Machine Intelligence Institute

Publisher

Springer Science and Business Media LLC

Reference93 articles.

1. Aletras, N., Stevenson, M (2013) Evaluating topic coherence using distributional semantics. In: Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013)–Long Papers. pp 13–22

2. Angelov D (2020) Top2vec: distributed representations of topics. arXiv preprint arXiv:2008.09470

3. Aynaud T, Blondel VD, Guillaume J-L, Lambiotte R (2013) Multilevel local optimization of modularity. In: Graph partitioning. Wiley, pp 315–345

4. Bianchi F, Terragni S, Hovy D (2020) Pre-training is a hot topic: contextualized document embeddings improve topic coherence. arXiv preprint arXiv:2004.03974

5. Blei D, Lafferty J (2006) Correlated topic models. Adv Neural Inf Process Syst 18:147

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3