Clusterix-Like BigData DBMS

Author:

Raikhlin Vadim A.,Klassen Roman K.ORCID

Abstract

AbstractCommercial OLAP systems are economically unavailable for organizations with limited financial capabilities. Analytical processing of large amounts of data in these organizations can be accomplished using open-source software systems on a cost-effective cluster platform. Previously created Clusterix-like DBMS using a regular query processing plan is not efficient enough. Therefore, research on such systems was developed with a focus on a full load of processor cores and using the GPU acceleration (systems Clusterix-N, N—from new) up to the development of a system comparable in efficiency to the open-source system Spark, which is currently considered the most promising. The development methodology was based on the constructive system modeling methodology.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computational Mechanics

Reference32 articles.

1. PGStrom (2016) https://wiki.postgresql.org/index.php?title=PGStrom&oldid=25517. Accessed: 09 May 2018

2. The MEMORY Storage Engine—MySQL 8.0 Reference Manual (2016) https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html. Accessed 03 Dec 2019

3. TPC-H Result Highlights (2016) Lenovo system x3950 X6. http://www.tpc.org/3321. Accessed 09 Aug 2018

4. CoGaDB—Column-oriented GPU-accelerated DBMS (2018) http://cogadb.cs.tudortmund.de/wordpress/ (2018). Accessed 09 May 2018

5. Breß S (2015) Efficient query processing in co-processor-accelerated database. Ph.D. Dissertation, University of Magdeburg

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IMPROVING THE AUTOMATIC PRETANSLATOR OF SQL-QUERIES TO A REGULAR PLAN;Vestnik komp'iuternykh i informatsionnykh tekhnologii;2021-12

2. Approximating median absolute deviation with bounded error;Proceedings of the VLDB Endowment;2021-07

3. Building Fast and Compact Sketches for Approximately Multi-Set Multi-Membership Querying;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3