Multiscale modeling of functionally graded shell lattice metamaterials for additive manufacturing

Author:

Shojaee M.ORCID,Valizadeh I.,Klein D. K.,Sharifi P.,Weeger O.

Abstract

AbstractIn this work, an experimentally validated multiscale modeling framework for additively manufactured shell lattice structures with graded parameters is introduced. It is exemplified in application to the Schwarz primitive triply periodic minimal surface microstructure and 3D printing using masked stereolithography of a photopolymer material. The systematic procedure starts with the characterization of a hyperelastic material model for the 3D printed material. This constitutive model is then employed in the finite element simulation of shell lattices at finite deformations. The computational model is validated with experimental compression tests of printed lattice structures. In this way, the numerical convergence behavior and size dependence of the model are assessed, and the range in which it is reasonable to assume linear elastic behavior is determined. Then, representative volume elements subject to periodic boundary conditions are simulated to homogenize the mechanical behavior of Schwarz primitives with varying aspect ratios and shell thicknesses. Subsequently, the parameterized effective linear elasticity tensor of the metamaterial is represented by a physics-augmented neural network model. With this constitutive model, functionally graded shell lattice structures with varying microstructural parameters are simulated as macroscale continua using finite element and differential quadrature methods. The accuracy, reliability and effectiveness of this multiscale simulation approach are investigated and discussed. Overall, it is shown that this experimentally validated multiscale simulation framework, which is likewise applicable to other shell-like metamaterials, facilitates the design of functionally graded structures through additive manufacturing. Graphical Abstract

Funder

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3