Near-boundary error reduction with an optimized weighted Dirichlet–Neumann boundary condition for stochastic PDE-based Gaussian random field generators

Author:

Ricketts Evan JohnORCID,Cleall Peter JohnORCID,Jefferson TonyORCID,Kerfriden PierreORCID,Lyons Paul

Abstract

AbstractRandom field generation through the solution of stochastic partial differential equations is a computationally inexpensive method of introducing spatial variability into numerical analyses. This is particularly important in systems where material heterogeneity has influence over the response to certain stimuli. Whilst it is a convenient method, spurious values arise in the near boundary of the domain due to the non-exact nature of the specific boundary condition applied. This change in the correlation structure can amplify or dampen the system response in the near-boundary region depending on the chosen boundary condition, and can lead to inconsistencies in the overall behaviour of the system. In this study, a weighted Dirichlet–Neumann boundary condition is proposed as a way of controlling the resulting structure in the near-boundary region. The condition relies on a weighting parameter which scales the application to have a more dominant Dirichlet or Neumann component, giving a closer approximation to the true correlation structure of the Matérn autocorrelation function on which the formulation is based on. Two weighting coefficients are proposed and optimal values of the weighting parameter are provided. Through parametric investigation, the weighted Dirichlet–Neumann approach is shown to yield more consistent correlation structures than the common boundary conditions applied in the current literature. We also propose a relationship between the weighting parameter and the desired length-scale parameter of the field such that the optimal value can be chosen for a given problem.

Funder

Cardiff University

LUSAS

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3