A comparison of artificial intelligence-based classification techniques in predicting flow variables in sharp curved channels
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,General Engineering,Modelling and Simulation,Software
Link
http://link.springer.com/content/pdf/10.1007/s00366-018-00697-7.pdf
Reference80 articles.
1. Akbari M, Vaghefi M (2017) Experimental investigation on streamlines in a 180° sharp bend. Acta Sci Technol 39(4):425–432
2. Akhtari AA, Abrishami J, Sharifi MB (2009) Experimental investigations water surface characteristics in strongly-curved open channels. J Appl Sci 9(20):3699–3706
3. Akhtari AA, Seyedashraf O (2018) Experimental and numerical investigation on Vanes’ effects on the flow characteristics in sharp 60° bends. KSCE J Civ Eng 22(4):1484–1495
4. Anwar HO (1986) Turbulent structure in a river bed. J Hydraul Eng 112:657–669
5. Araghinejad S, Fayaz N, Hosseini-Moghari SM (2018) Development of a hybrid data driven model for hydrological estimation. Water Resour Manag 1–14
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MLFV: a novel machine learning feature vector method to predict characteristics of turbulent heat and fluid flow;International Journal of Numerical Methods for Heat & Fluid Flow;2024-08-22
2. Water quality fluctuations prediction and Debi estimation based on stochastic optimized weighted ensemble learning machine;Process Safety and Environmental Protection;2024-08
3. Machine learning and parametrisation of multi-cell structures of secondary circulation in a tight open channel bend using LES;Engineering Applications of Computational Fluid Mechanics;2024-01-18
4. Intelligent Navigation Decisions-Making in Curved Channels: Review and Challenges;2023 7th International Conference on Transportation Information and Safety (ICTIS);2023-08-04
5. Artificial Intelligence and Deep Learning in Civil Engineering;Studies in Systems, Decision and Control;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3