Solving acoustic scattering problems by the isogeometric boundary element method

Author:

Dölz Jürgen,Harbrecht HelmutORCID,Multerer Michael

Abstract

AbstractWe solve acoustic scattering problems by means of the isogeometric boundary integral equation method. In order to avoid spurious modes, we apply the combined field integral equations for either sound-hard scatterers or sound-soft scatterers. These integral equations are discretized by Galerkin’s method, which especially enables the mathematically correct regularization of the hypersingular integral operator. In order to circumvent densely populated system matrices, we employ the isogeometric embedded fast multipole method, which is based on interpolation of the kernel function under consideration on the reference domain, rather than in space. To overcome the prohibitive cost of the potential evaluation in case of many evaluation points, we also accelerate the potential evaluation by a fast multipole method which interpolates in space. The result is a frequency stable algorithm that scales essentially linear in the number of degrees of freedom and potential points. Numerical experiments are performed which show the feasibility and the performance of the approach.

Funder

Deutsche Forschungsgemeinschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

University of Basel

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Beirão da Veiga L, Buffa A, Sangalli G, Vázquez R (2014) Mathematical analysis of variational isogeometric methods. Acta Numer 23:157–287

2. Börm S, Hackbusch W (2002) $$\cal{H} ^2$$-matrix approximation of integral operators by interpolation. Appl Numer Math 43(1–2):129–143

3. Buffa A, Rivas J, Sangalli G, Vázquez R (2011) Isogeometric discrete differential forms in three dimensions. SIAM J Numer Anal 49(2):818–844

4. Buffa A, Dölz J, Kurz S, Schöps S, Vázquez R, Wolf F (2020) Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis. Numer Math 144(1):201–236

5. Burton AJ, Miller GF (1971) The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc R Soc A 323:201–210

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3