Abstract
AbstractThis research proposes a new formulation for fail-safe size optimization, considering the probability of occurrence of each failure scenario and the random structural parameters as sources of uncertainty. Essentially, the fail-safe reliability-based design optimization is reformulated, where the term “damaged structure” coalesces information of the whole set of damaged configurations. Thus, a single random reliability index is defined, representing the reliability of a limit-state of the damaged structure, which accounts for the safety level of the entire set of damaged configurations. The method provides the optimum design for which the reliability indices of the damaged structure are achieved at the confidence level the designer demands. The first application example corresponds to an academic analytical problem. The second and third application examples correspond to practical engineering cases: a 2D truss structure with stress constraints as well as the tail section of an aircraft fuselage with stress and buckling constraints. Results show a considerable reduction of the objective function compared to the fail-safe RBDO, which could lead to oversized designs. In this sense, mass savings up to 13.6% are achieved for the industrial-like application example.
Funder
Ministerio de Ciencia e Innovación
Xunta de Galicia
Universidade da Coruña
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,General Engineering,Modeling and Simulation,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献