Non-local modelling of multiphase flow wetting and thermo-capillary flow using peridynamic differential operator

Author:

Wang Bingquan,Oterkus Selda,Oterkus Erkan

Abstract

AbstractInterfaces in multiphase flows are affected by surface tension, and when temperature gradients occur in the flow domain, tangential surface tensions along the interface also arise. As the behaviour of fluids contacting on a solid surface is also governed by surface tension, the description of the wetting phenomenon is challenging. Peridynamic differential operator (PDDO) can express partial differentials of any order by integral equations. Therefore, the governing equations for multiphase fluid motion, such as the Navier–Stokes equations and energy equations, can be reformulated in terms of integral equations. In this study, a novel non-local method is developed for modelling the multiphase fluid flow motion using the PDDO, and the thermal effect on surface tension force is considered. To describe the surface tension forces in the normal and tangential directions, the non-local form of the continuum surface force (CFS) model is presented. Besides, to overcome the inaccuracy of the unit normal vectors at the three-phase flow intersection region, an additional treatment for this region is presented. Finally, several benchmark multiphase fluid flow cases, such as square droplet deformation, surface wetting, and droplet migration in thermo-capillary flow are presented and validated. The results demonstrate that the developed non-local model can accurately capture the surface tension effect in multiphase fluid flow motion.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3