A simple agent-based model to simulate 3D tumor-induced angiogenesis considering the evolution of the hypoxic conditions of the cells

Author:

Benítez José María,García-Mozos Luis,Santos Anastasio,Montáns Francisco JavierORCID,Saucedo-Mora Luis

Abstract

AbstractIn tumors, angiogenesis (conformation of a new vasculature from another primal one) is produced with the releasing of tumor angiogenic factors from hypoxic cells. These angiogenic substances are distributed around the tumor micro-environment by diffusion. When they reach the primal blood vessel bed, the sprouting and branching of a new micro-vascular network is produced. These new capillaries will supply oxygen to cells so that their hypoxic state is overcome. In this work, a new and simple 3D agent-based model to simulate tumor-induced angiogenesis is presented. In this approach, the evolution of the hypoxic conditions in cells along the related conformation of the new micro-vessels is considered. The importance that the relative position of the primal vasculature and tumor structure takes in the final distribution of the new micro-vasculature has also been addressed. The diffusion of angiogenic factors and oxygen has been modelled at the targets by numerical convolution superposition of the analytical solution from the sources. Qualitative and quantitative results show the importance of tip endothelial cells in overcoming hypoxic conditions in cells at early stages of angiogenesis. At final stages, anastomosis plays an important role in the reduction of hypoxia in cells.

Funder

Agencia Estatal de Investigación

Universidad Politécnica de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3