Improved Slime Mould Algorithm based on Firefly Algorithm for feature selection: A case study on QSAR model
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,General Engineering,Modeling and Simulation,Software
Link
http://link.springer.com/content/pdf/10.1007/s00366-021-01342-6.pdf
Reference64 articles.
1. Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020) Benchmark for filter methods for feature selection in high-dimensional classification data. Comput Stat Data Anal 143:106839
2. Liu H, Motoda H (2012) Feature selection for knowledge discovery and data mining, vol 454. Springer, Berlin
3. Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795
4. Alhaj YA, Xiang J, Zhao D, Al-Qaness MAA, Elaziz MA, Dahou A (2019) A study of the effects of stemming strategies on arabic document classification. IEEE Access 7:32664–32671
5. Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer, Berlin
Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mandibular condyle detection using deep learning and modified mountaineering team-based optimization algorithm;Alexandria Engineering Journal;2024-11
2. Feature selection method for banknote dirtiness recognition based on mathematical functions driven slime mould algorithm;Expert Systems with Applications;2024-10
3. Cross vision transformer with enhanced Growth Optimizer for breast cancer detection in IoMT environment;Computational Biology and Chemistry;2024-08
4. An effective theoretical and experimental analysis method for the improved slime mould algorithm;Expert Systems with Applications;2024-08
5. Methodology of solving the feature selection problem for the Cox regression model;Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics;2024-07-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3