An evolutionary-based polynomial regression modeling approach to predicting discharge flow rate under sheet piles

Author:

Asr A. Ahangar,Johari A.,Javadi A. A.

Abstract

AbstractThe discharge flow rate beneath sheet plies is an essential parameter in designing these water retaining structures. This paper presents a unified framework for modeling and predicting discharge flow rate using an evolutionary-based polynomial regression technique. EPR (Evolutionary Polynomial Regression) is a data-driven method based on evolutionary computing to search for polynomial structures representing a system. The input parameters in the modeling procedure included the sheet pile height, upstream water head, and the hydraulic conductivity anisotropy ratio. Due to ever-increasing demand for water, a widely held view on predicting and controlling the available water behind reservoirs, dams, barrages, and weirs is of vital importance. To this end, the sheer novelty of the current study has been worn off through the development of a comprehensive model to predict the flow rate considering the most effective variables in the seepage issue. To the best of our knowledge, the research conducted in the literature has yet to cover the whole seepage problem using a comprehensive database extracted by numerical methods; thus, a comprehensive finite-element-based artificial database including 1000 data lines was created using the Scaled Boundary Finite Element Method (SBFEM) by simulating seepage beneath sheet plies covering a considerably wide range of seepage-related real-world values. The database was then employed to develop and validate the EPR flow rate prediction model. Data were divided into training (used for creating the models) and testing (for validating the developed models) data based on a statistical process. The procedure for preparing the data and developing and validating the models is presented in detail in this paper. The main advantage of the proposed models over a conventional and neural network and most GP (Genetic Programming)-based constitutive models is that they provide the optimum structure for the material constitutive model representation as well as its parameters, directly from raw experimental (or field) data. EPR can learn nonlinear and complex material behavior without any prior assumptions on the constitutive relationships. The proposed algorithm captures and transparently presents relationships between contributing parameters in polynomial expressions providing the user with a clear insight into the problem. EPR-based model predictions demonstrated an excellent agreement with the unseen simulated data used for validating the developed model. A parametric study on the presented models was conducted to investigate the effects of the contributing parameters on model predictions and the consistency of the parameter relationships with the database. Results of the parametric study showed that the effects of variations in the contributing parameters on EPR predictions are in line with the expected behavior. The merits and advantages of the proposed technique are discussed in the paper.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3