Explicit consistency conditions for fully symmetric cubature on the tetrahedron

Author:

Wang WeizhuORCID,Papanicolopulos Stefanos-AldoORCID

Abstract

AbstractA novel fully symmetric basis is derived for the $${S}_4$$ S 4 -invariant polynomial space, by using symmetric polynomials and invariant theory. This new basis enables deriving explicitly the consistency conditions for non-overdeterminedness of moment equations in the case of fully symmetric cubature rules on the tetrahedron. Solving the corresponding linear integer programming problem, optimal and quasi-optimal rule structures are derived. Explicit formulas to calculate the estimated lower bounds in the number of integration points are also given. Additionally, the new basis is of practical interest in calculating specific cubature rules, since it allows decomposing the moment equations into a series of successively independent smaller subsystems, which can be exploited in designing more efficient solution methods. Solving the moment equations analytically we obtain several interesting new results.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3