Homogenization of the elastic-viscoplastic damage behavior of asphalt mixtures based on the mesomechanical Mori–Tanaka method

Author:

Du Cong,Liu PengfeiORCID,Oeser Markus

Abstract

AbstractTo improve the efficiency and accuracy in characterizing the nonlinear behavior of multi-phased asphalt mixtures and to further facilitate asphalt pavement design based on the nonlinear properties, this study proposes a homogenized method for the elastic-viscoplastic-damage constitutive model. The Drucker–Prager-type yield surfaces and non-association flow rule were employed to describe the viscoplastic strain of asphalt materials. The continuum damage mechanics (CDM) were incorporated to characterize the evolutions of internal micro-cracks or micro-voids in structures. The mesomechanical Mori–Tanaka (MT) method was used to yield the homogenized nonlinear strain components within multi-phase structures. The proposed constitutive model was then implemented in finite element (FE) simulations based on a self-developed subroutine. Several case studies were conducted, in which composite structures with one inclusion were simulated under constant stress and strain loading rate. Amongst the composite structures, the inclusions with various volume contents and shapes were taken into account. In addition, the influence of air voids in structures was considered by defining the zero stiffness for inclusions. The results indicated that the nonlinear behavior of composite with single aggregate or air void can be effectively represented using the proposed method. Furthermore, by coupling the homogenized nonlinear constitutive relation into the locally homogenous model from previous work, not only was the viscoplastic-damage behavior of the composite with multiple inclusions effectively demonstrated by the definition of the nonlinear material, but the internal heterogeneous feature was also precisely represented by the local cells. Therefore, the proposed homogenized method can effectively predict the viscoplastic and damage behavior of asphalt mixtures with various inclusions by simply specifying the parameters in the FE simulations.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3