Integrating CoDA and PCA for enhanced characterization of fluvial depositional processes: a case study of the Shendi formation, Sudan

Author:

Eltijani AbdelrhimORCID,Mohammed Musaab A. A.ORCID,Abuobida Yousif,Yousif Ibrahim M.ORCID

Abstract

AbstractTraditional approaches to fluvial sedimentary analysis often face challenges in deciphering complex, multivariate datasets. This study combines compositional data analysis (CoDA) with principal component analysis (PCA) to enhance the characterization of depositional processes and sub-environments within the Shendi Formation. The PCA applied to centered log ratio (clr)-transformed grain size distributions, reveals three principal components with ~ 91.86% of the data variance explained, representing distinct processes: bedload-dominated channel-bar dynamics, overbank deposition, and high-energy flood events. Specific lithofacies associations strongly correlate to each principal component. This integrated approach enables the identification of subtle yet significant patterns within the complex sedimentological record. The Shendi Formation exhibits characteristics of a dynamic fluvial setting with variations in flow energy, channel migration, and periodic flooding. Our findings demonstrate the power of CoDA-PCA in refining the understanding of fluvial depositional systems and highlight its potential for broader applications.

Publisher

Springer Science and Business Media LLC

Reference63 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3