SAL3D: a model for saliency prediction in 3D meshes

Author:

Martin DanielORCID,Fandos Andres,Masia BelenORCID,Serrano AnaORCID

Abstract

AbstractAdvances in virtual and augmented reality have increased the demand for immersive and engaging 3D experiences. To create such experiences, it is crucial to understand visual attention in 3D environments, which is typically modeled by means of saliency maps. While attention in 2D images and traditional media has been widely studied, there is still much to explore in 3D settings. In this work, we propose a deep learning-based model for predicting saliency when viewing 3D objects, which is a first step toward understanding and predicting attention in 3D environments. Previous approaches rely solely on low-level geometric cues or unnatural conditions, however, our model is trained on a dataset of real viewing data that we have manually captured, which indeed reflects actual human viewing behavior. Our approach outperforms existing state-of-the-art methods and closely approximates the ground-truth data. Our results demonstrate the effectiveness of our approach in predicting attention in 3D objects, which can pave the way for creating more immersive and engaging 3D experiences.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3