Author:
Kong Xin,Xia Shifeng,Liu Ningzhong,Wei Mingqing
Funder
National Natural Science Foundation of China
NUAA Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software
Reference41 articles.
1. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3d point clouds: a survey. IEEE Trans. Patt. Anal. Mach. Intell. 43(12), 4338–4364 (2020)
2. Alonso, I., Montesano, L.R.L., Murillo, A.C.: Domain adaptation in lidar semantic segmentation. arXiv e-prints, 2010 (2020)
3. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4376–4382 (2019). IEEE
4. Zhao, S., Wang, Y., Li, B., Wu, B., Gao, Y., Xu, P., Darrell, T., Keutzer, K.: epointda: An end-to-end simulation-to-real domain adaptation framework for lidar point cloud segmentation. arXiv preprint arXiv:2009.03456 2, 3 (2020)
5. Jiang, P., Saripalli, S.: Lidarnet: A boundary-aware domain adaptation model for point cloud semantic segmentation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2457–2464 (2021)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献