Abstract
AbstractIn applications of augmented reality or mixed reality, rendering virtual objects in real scenes with consistent illumination is crucial for realistic visualization experiences. Prior learning-based methods reported in the literature usually attempt to reconstruct complicated high dynamic range environment maps from limited input, and rely on a separate rendering pipeline to light up the virtual object. In this paper, an object-based illumination transferring and rendering algorithm is proposed to tackle this problem within a unified framework. Given a single low dynamic range image, instead of recovering lighting environment of the entire scene, the proposed algorithm directly infers the relit virtual object. It is achieved by transferring implicit illumination features which are extracted from its nearby planar surfaces. A generative adversarial network is adopted in the proposed algorithm for implicit illumination features extraction and transferring. Compared to previous works in the literature, the proposed algorithm is more robust, as it is able to efficiently recover spatially varying illumination in both indoor and outdoor scene environments. Experiments have been conducted. It is observed that notable experiment results and comparison outcomes have been obtained quantitatively and qualitatively by the proposed algorithm in different environments. It shows the effectiveness and robustness for realistic virtual object insertion and improved realism.
Funder
National Natural Science Foundation of China
Open Project Program of the National Laboratory of Pattern Recognition
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献