Neural network adaption for depth sensor replication

Author:

Kunert ChristianORCID,Schwandt Tobias,Nadar Christon R.,Broll Wolfgang

Abstract

AbstractIn recent years, various depth sensors that are small enough to be used with mobile hardware have been introduced. They provide important information for use cases like 3D reconstruction or in the context of augmented reality where tracking and camera data alone would be insufficient. However, depth sensors may not always be available due to hardware limitations or when simulating augmented reality applications for prototyping purposes. In these cases, different approaches like stereo matching or depth estimation using neural networks may provide a viable alternative. In this paper, we therefore explore the imitation of depth sensors using deep neural networks. For this, we use a state-of-the-art network for depth estimation and adapt it in order to mimic a Structure Sensor as well as an iPad LiDAR sensor. We evaluate the network which was pre-trained on NYU V2 directly as well as several variations where transfer learning is applied in order to adapt the network to different depth sensors while using various data preprocessing and augmentation techniques. We show that a transfer learning approach together with appropriate data processing can enable an accurate modeling of the respective depth sensors.

Funder

ERDF

Carl-Zeiss-Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software

Reference33 articles.

1. Alhashim, I., Wonka, P.: High quality monocular depth estimation via transfer learning. arXiv e-prints arXiv:1812.11941 (2018)

2. Bhat, S.F., Alhashim, I., Wonka, P.: Adabins: Depth estimation using adaptive bins. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4009–4018 (2021)

3. Chen, W., Fu, Z., Yang, D., Deng, J.: Single-image depth perception in the wild. CoRR (2016), arXiv:1604.03901

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. pp. 248–255. IEEE (2009)

5. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems. pp. 2366–2374 (2014)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LAM-Depth: Laplace-Attention Module-Based Self-Supervised Monocular Depth Estimation;IEEE Transactions on Intelligent Transportation Systems;2024

2. Data Collection Pipeline for Big Interior Registration and Modelling using 3D Sensor;Journal of Physics: Conference Series;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3