GOSS: towards generalized open-set semantic segmentation

Author:

Hong Jie,Li Weihao,Han Junlin,Zheng Jiyang,Fang Pengfei,Harandi Mehrtash,Petersson Lars

Abstract

AbstractIn this paper, we extend Open-set Semantic Segmentation (OSS) into a new image segmentation task called Generalized Open-set Semantic Segmentation (GOSS). Previously, with well-known OSS, the intelligent agents only detect unknown regions without further processing, limiting their perception capacity of the environment. It stands to reason that further analysis of the detected unknown pixels would be beneficial for agents’ decision-making. Therefore, we propose GOSS, which holistically unifies the abilities of two well-defined segmentation tasks, i.e. OSS and generic segmentation. Specifically, GOSS classifies pixels as belonging to known classes, and clusters (or groups) of pixels of unknown class are labelled as such. We propose a metric that balances the pixel classification and clustering aspects to evaluate this newly expanded task. Moreover, we build benchmark tests on existing datasets and propose neural architectures as baselines. Our experiments on multiple benchmarks demonstrate the effectiveness of our baselines. Code is made available at https://github.com/JHome1/GOSS_Segmentor.

Funder

Australian National University

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Class Semantics Modulation for Open-Set Instance Segmentation;IEEE Robotics and Automation Letters;2024-03

2. Open-Set Tattoo Semantic Segmentation;IEEE Access;2024

3. REIN: Reusing ImageNet to Improve Open-set Object Detection;2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA);2023-11-28

4. Segmenting Known Objects and Unseen Unknowns without Prior Knowledge;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. Residual Pattern Learning for Pixel-wise Out-of-Distribution Detection in Semantic Segmentation;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3