Using visual feedback to improve hand movement accuracy in confined-occluded spaces in virtual reality

Author:

Wang YuORCID,Hu Ziran,Yao ShouwenORCID,Liu Hui

Abstract

AbstractAccurate and informative hand-object collision feedback is of vital importance for hand manipulation in virtual reality (VR). However, to our best knowledge, the hand movement performance in fully-occluded and confined VR spaces under visual collision feedback is still under investigation. In this paper, we firstly studied the effects of several popular visual feedback of hand-object collision on hand movement performance. To test the effects, we conducted a within-subject user study (n=18) using a target-reaching task in a confined box. Results indicated that users had the best task performance with see-through visualization, and the most accurate movement with the hybrid of proximity-based gradation and deformation. By further analysis, we concluded that the integration of see-through visualization and proximity-based visual cue could be the best compromise between the speed and accuracy for hand movement in the enclosed VR space. On the basis, we designed a visual collision feedback based on projector decal,which incorporates the advantages of see-through and color gradation. In the end, we present demos of potential usage of the proposed visual cue.

Funder

national natural science foundation of china

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coarse-to-fine cascaded 3D hand reconstruction based on SSGC and MHSA;The Visual Computer;2024-04-08

2. Excuse Me: Large Groups in Small Rooms;2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2024-03-16

3. VRGestures: Controller and Hand Gesture Datasets for Virtual Reality;Lecture Notes in Computer Science;2024

4. Giant Finger: A Novel Visuo-Somatosensory Approach to Simulating Lower Body Movements in Virtual Reality;2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR);2023-10-16

5. Virtual-Reality Interpromotion Technology for Metaverse: A Survey;IEEE Internet of Things Journal;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3