Learning wavelet coefficients for face super-resolution

Author:

Ying Liu,Dinghua SunORCID,Fuping Wang,Pang Lim Keng,Kiang Chiew Tuan,Yi Lai

Abstract

AbstractFace image super-resolution imaging is an important technology which can be utilized in crime scene investigations and public security. Modern CNN-based super-resolution produces excellent results in terms of peak signal-to-noise ratio and the structural similarity index (SSIM). However, perceptual quality is generally poor, and the details of the facial features are lost. To overcome this problem, we propose a novel deep neural network to predict the super-resolution wavelet coefficients in order to obtain clearer facial images. Firstly, this paper uses prior knowledge of face images to manually emphases relevant facial features with more attention. Then, a linear low-rank convolution in the network is used. Finally, image edge features from canny detector are applied to enhance super-resolution images during training. The experimental results show that the proposed method can achieve competitive PSNR and SSIM and produces images with much higher perceptual quality.

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software

Reference44 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3