MVPCL: multi-view prototype consistency learning for semi-supervised medical image segmentation
-
Published:2024-05-29
Issue:
Volume:
Page:
-
ISSN:0178-2789
-
Container-title:The Visual Computer
-
language:en
-
Short-container-title:Vis Comput
Author:
Li Xiafan,Quan Hongyan
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Wang, Y., Wang, H., Shen, Y., Fei, J., Li, W., Jin, G., Wu, L., Zhao, R., Le, X.: Semi-supervised semantic segmentation using unreliable pseudo-labels. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18–24, 2022, pp. 4238–4247. IEEE (2022) 2. Wu, L., Fang, L., He, X., He, M., Ma, J., Zhong, Z.: Querying labeled for unlabeled: cross-image semantic consistency guided semi-supervised semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(7), 8827–8844 (2023) 3. Xu, Z., Wang, Y., Lu, D., Yu, L., Yan, J., Luo, J., Ma, K., Zheng, Y., Tong, R.K.: All-around real label supervision: cyclic prototype consistency learning for semi-supervised medical image segmentation. IEEE J. Biomed. Health Informatics 26(7), 3174–3184 (2022) 4. Cheema, M.N., Nazir, A., Yang, P., Sheng, B., Li, P., Li, H., Wei, X., Qin, J., Kim, J., Feng, D.D.: Modified GAN-CAED to minimize risk of unintentional liver major vessels cutting by controlled segmentation using CTA/SPET-CT. IEEE Trans. Ind. Inform. 17(12), 7991–8002 (2021) 5. Nazir, A., Cheema, M.N., Sheng, B., Li, H., Li, P., Yang, P., Jung, Y., Qin, J., Kim, J., Feng, D.D.: Off-enet: An optimally fused fully end-to-end network for automatic dense volumetric 3d intracranial blood vessels segmentation. IEEE Trans. Image Process. 29, 7192–7202 (2020)
|
|